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OVERVIEW

▪ What is a tree?
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OVERVIEW

▪ In computer science a tree is an abstract data type that 

stores data in a hierarchical way, much like a family tree

▪ For tree node has most one parent

▪ Each tree node has zero or more children

▪ Each tree node has zero or more siblings
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OVERVIEW

▪ Different types of data can be stored in tree nodes 

depending on needs of the application

▪ Numbers, characters, strings

▪ Objects, other ADTs

▪ When we limit the number of children each node can have 

to two, we have a binary tree

▪ Useful for quickly storing and retrieving data

▪ Also used to represent arithmetic expressions 
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TREE TERMINOLOGY

▪ Root – top of tree, has no parent

▪ Leaf – bottom of tree, has no children

▪ Internal – not root, not leaf

▪ Height – the number of nodes on the longest path from 

leaf node to root node

Root

Leaf Nodes

Height = 3
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TREE TERMINOLOGY

▪ Empty – tree with zero nodes

▪ Full – binary tree with all leaf nodes at level h and all other 

nodes have 2 children

Full tree, height 2 

Full tree, height 3 
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TREE TERMINOLOGY

▪ How many nodes N can we store in a full binary tree of 

height h?

h = 1, N = 1

h = 2, N = 1+2 = 3

h = 3, N = 1+2+4 = 7

h = 4, N = 1+2+4+8 = 15

…

N = 1+2+…+2h-1 = 2h-1

h=2, N= 22-1=3

h=3, N= 23-1=7
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TREE TERMINOLOGY

▪ What is the minimum height of a binary tree that contains 

N nodes?  Assume tree is full.

N = 2h-1 

h = log2(N+1)

N=3, h=log24 = 2

N=7, h=log28 = 3
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TREE TERMINOLOGY

▪ Complete – a binary tree that is full to level h-1 and all leaf 

nodes on level h are filled in from left to right

Complete

Complete

Not complete

CSCE 2014 - Programming Foundations II 10

Complete



TREE TERMINOLOGY

▪ Balanced – a binary tree in which the height of the left and 

right subtrees of any node in the tree differ by at most one

2
1

Balanced

2

3

Balanced Not balanced

2

0
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BINARY SEARCH TREES

▪ Consider the task of searching a sorted array of data 

using binary search

▪ We will always look at at data[3]=11 first

▪ If value is < 11 we will look at data[1]=4 next

▪ If value is > 11 we will look at data[5]=15 next

▪ This continues until we find the desired value

1 4 9 11 12 15 18

0 1 2 3 4 5 6
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BINARY SEARCH TREES

▪ This sequence of decisions can be stored in a binary 

search tree (BST)

11

154

91 12 18

< 11 > 11

• All nodes in the left 

subtree are smaller in 

value than parent

• All nodes in the right 

subtree are larger in 

value than parent

• This is true for all 

nodes in BST
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BINARY SEARCH TREES

Which of the following are valid BSTs?
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BST CLASS DEFINITION

class node

{

public:

int value;

node *left;

node *right;

};

value left right

11
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BST CLASS DEFINITION

class BST

{

public:

BST();

~BST();

// public methods

void print();

bool search(int value);

bool insert(int value);

bool delete(int value);

...
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BST CLASS DEFINITION

...

private:

// private methods 

void print(node* ptr);

bool search(node* ptr, int value);

bool insert(node* &ptr, int value);

bool delete(node* &ptr, int value);

bool delete_node(node* &ptr);

// pointer to root of tree

node *root;

};
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BST PRINT

▪ Assume you are given a valid BST and you want to print 
all the values in the tree

▪ With an array or linked list, we can start at one end and 
use a loop access all the data up to the other end

▪ In order to print a BST, we can not simply loop over the 
nodes.  We need to call a recursive function that visits all 
of the nodes in the tree

▪ We need to pass in a pointer to the root of tree

▪ Make recursive calls with left and right pointers

▪ The order we visit nodes determines print order
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BST PRINT

void BST::print1(node* ptr)

{ // terminating condition

if (ptr == NULL) return;

// print left subtree

print1(ptr->left);

// print node value

cout << ptr->value << endl;

// print right subtree

print1(ptr->right);

}

This will print the 

data values in 

sorted order
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BST PRINT

void BST::print2(node* ptr)

{ // terminating condition

if (ptr == NULL) return;

// print node value

cout << ptr->value << endl;

// print left subtree

print2(ptr->left);

// print right subtree

print2(ptr->right);

}

This will print the 

data values in 

preorder

CSCE 2014 - Programming Foundations II 23



BST PRINT

void BST::print3(node* ptr)

{ // terminating condition

if (ptr == NULL) return;

// print left subtree

print3(ptr->left);

// print right subtree

print3(ptr->right);

// print node value

cout << ptr->value << endl;

}

This will print the 

data values in 

postorder
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BST PRINT

Example with numerical data:
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BST PRINT

Example with symbolic data:
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BST PRINT

▪ The print functions above have a node* ptr parameter

▪ The user of the BST class should never have direct access 

to the private root pointer

▪ For this reason, we call the private print method from the 

public print method as follows

void BST::print()

{ // call private method

print1(root);

}
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BST PRINT

▪ How many steps will this print function take?

▪ We have to visit all N nodes, so print takes O(N) steps

▪ This is one place where we do not need to worry about 

how balanced or unbalanced the tree is

▪ Is it possible to print a tree using iteration?

▪ Yes, but it is much more complicated

▪ We need to use a stack to keep track of nodes to print

▪ This is why recursion is so important to master
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BST SEARCH
▪ Assume we are given a valid BST and wish to locate a desired 

value in the tree

▪ Search Algorithm:

▪ Start ptr at root of tree

▪ If node value > desired go to left child

▪ If node value < desired go to right child

▪ Stop when ptr is null or when value is found
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BST SEARCH

11

154

91 12 18

11

154

91 12 18

11

154

91 12 18

• Assume we are searching 

the BST for the value 9

9 < 11 so go left we found the 9 node

9 > 4 so go rightstart at root of tree
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BST SEARCH

11

154

91 12 18

11

154

91 12 18

11

154

91 12 18

• Assume we are searching 

the BST for the value 13

13 > 11 so go right 13 > 12 but null pointer to 

right so the value not found

13 < 15 so go leftstart at root of tree
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BST SEARCH

bool List::search(int value)

{

// iteratively search linked list

node *ptr = head;

while ((ptr != NULL) && (ptr->value != value))

{

// go to next node

ptr = ptr->next;

}

// return true/false if found or not

return((ptr != NULL) && (ptr->value == value));

}
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BST SEARCH

bool BST::search1(node* ptr, int value)

{ // iteratively search tree

while ((ptr != NULL) && (ptr->value != value))

{ // search left or right subtree

if (ptr->value > value) 

ptr = ptr->left;

else if (ptr->value < value) 

ptr = ptr->right;

}

// return true/false if found or not

return((ptr != NULL) && (ptr->value == value));

}
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BST SEARCH

bool BST::search2(node* ptr, int value)

{ // terminating conditions

if (ptr == NULL) 

return false;

else if (ptr->value == value) 

return true;

// recursively search tree

if (ptr->value > value) 

return search(ptr->left, value);

else if (ptr->value < value) 

return search(ptr->right, value);

}
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BST SEARCH

▪ The search functions above have a node *ptr parameter

▪ The user of the BST class should never have direct access 

to the private root pointer

▪ For this reason, we call the private search method from the 

public search method as follows

bool BST::search(int value)

{ // call private method

return search2(root, value);

}
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BST SEARCH

• Assume we have a BST with

nodes at these memory locations

• Lets do the box method trace

of the call to tree.search(9)
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BST SEARCH

• The root of the BST is at 

memory location 1000 so

we call tree.search2(1000, 9)
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91 12 18

1016

1000

1032

10481064 1080 1096

search(9) search2(1000,9)

root



BST SEARCH

• ptr->value is 11 > 9 so 

we search left and call call 

tree.search2(1016, 9)
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1016

1000

1032

10481064 1080 1096

search(9) search2(1000,9) search2(1016,9)

ptr->leftroot



BST SEARCH

• ptr->value is 4 < 9 so 

we search right and call call 

tree.search2(1080, 9)
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1016

1000

1032

10481064 1080 1096

search(9) search2(1000,9) search2(1016,9) search2(1080,9)

ptr->left ptr->rightroot



BST SEARCH

• ptr->value is 9 == 9 so 

we return true all the way back

to the search(9) call
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11

154

91 12 18

1016

1000

1032

10481064 1080 1096

search(9) search2(1000,9) search2(1016,9) search2(1080,9)

ptr->left ptr->right found
root



BST SEARCH

▪ If we have a balanced tree, this BST search algorithm will find 

the data after O(log2N) steps

▪ If we have a very unbalanced tree (that looks like a linked list) 

this BST search may take O(N) steps

▪ On average, we can expect BST search to take O(log2N) steps
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BST INSERT

▪ Assume we want to insert a new data value into a BST

▪ We want to make sure we will still have a valid BST after 

insertion so we must insert data where we expect to find it

▪ Insert Algorithm:

▪ Search the BST for the desired value

▪ Add the new node at the “dead end”

11

154

12

11

154

insert value 12
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BST INSERT

Examples:

10

147

12

10

205 insert 2 and 8

insert 13 and 14
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BST INSERT

Examples:

8

93 insert 10, 11, and 12

insert 12, 10, and 11

insert 42empty tree
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BST INSERT

▪ With this algorithm we are always inserting a new leaf 

node (never an internal node)

▪ Order matters when inserting values into a BST

▪ What will happen if we insert N sorted values into a BST?

▪ What will happen if we insert N random values into a BST?
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BST INSERT

bool BST::insert(node* ptr, int value)

{

// terminating condition

if (ptr == NULL)

{

// insert node into BST

ptr = new node;

ptr->value = value;

ptr->left = NULL;

ptr->right = NULL;

return true;

}

…
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BST INSERT

…

// recursive search and insert

else if (ptr->value > value) 

return insert(ptr->left, value);

else if (ptr->value < value) 

return insert(ptr->right, value);

return false;

}

▪ Do you see any problems with function parameters?

▪ What will this function do if we insert duplicate data?
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BST INSERT

bool BST::insert(node* &ptr, int value)

{

// terminating condition

if (ptr == NULL)

{

// insert node into BST

ptr = new node;

ptr->value = value;

ptr->left = NULL;

ptr->right = NULL;

return true;

}

…
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BST INSERT

…

// recursive search and insert

else if (ptr->value >= value) 

return insert(ptr->left, value);

else if (ptr->value < value) 

return insert(ptr->right, value);

}

▪ This will insert duplicate values into left subtree.  
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BST INSERT

…

// recursive search and insert

else if (ptr->value > value) 

return insert(ptr->left, value);

else if (ptr->value <= value) 

return insert(ptr->right, value);

}

▪ This will insert duplicate values into right subtree.  
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BST INSERT

▪ The insert function above has a node* &ptr parameter

▪ Since the user of the BST class should never have access 

to the root pointer, we call the private insert method from 

the public insert method as follows

bool BST::insert(int value)

{ // call private method

return insert(root, value);

}
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BST INSERT

• Assume we have a BST with

nodes at these memory locations

• Lets do the box method trace

of the call to tree.insert(9)
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root



BST INSERT

• The root of the BST is at 

memory location 1000 so

we call tree.insert(root, 9)
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1016

1000

1032

10481064 1096

insert(9) insert(root,9)

root



BST INSERT

• ptr->value is 11 > 9 so 

we go left and call call 

tree.insert(ptr->left, 9)
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insert(9) insert(root,9) insert(ptr->left,9)

ptr->leftroot



BST INSERT

• ptr->value is 4 < 9 so 

we go right and call call 

tree.insert(ptr->right, 9)
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1032
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insert(9) insert(root,9) insert(ptr->left,9) insert(ptr->right,9)

ptr->left ptr->rightroot



BST INSERT

• Since ptr->right == NULL we 

create a new tree node at location 

1080 and store this in ptr->right 

which is a reference parameter
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1016

1000

1032

10481064 1080 1096

insert(9) insert(root,9) insert(ptr->left,9) insert(ptr->right,9)

ptr->left ptr->right new node
root



BST INSERT

• Finally we save value 9 in

the new node and return true

back to the insert(9) call
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insert(9) insert(root,9) insert(ptr->left,9) insert(ptr->right,9)

ptr->left ptr->right new node
root



BST INSERT

▪ If we have a balanced tree, each BST insertion operation will 

take O(log2N) steps

▪ If we have a very unbalanced tree, each BST insertion operation 

may take O(N) steps

▪ On average, we can expect O(log2N) steps per insertion
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BST DELETE

▪ Assume we are given a valid BST and we wish to delete a 

node with a given value

▪ We have to be careful to maintain a valid BST

▪ Delete Algorithm:

▪ Start at root of tree

▪ Search for node to delete from tree

▪ Adjust tree pointers to “jump over” the deleted node

▪ Delete the node
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BST DELETE

There are three cases to consider when deleting a node:

0 children – set pointer to deleted node to null

10

147

12

10

147

delete value 12
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BST DELETE

1 child – change pointer in the parent of the deleted node so it 

points to the child of the deleted node

10

147

12

delete value 14

10

7

12
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BST DELETE

2 children – find left most node in right sub tree

– swap value with node to be deleted

– delete left most node from tree

10

147

12

delete value 10

12

147

12

147

10
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BST DELETE

2 children – find right most node in left sub tree

– swap value with node to be deleted

– delete right most node from tree

10

147

12

delete value 10

7

1410

12

7

14

12
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BST DELETE

▪ In this case, swapping with left most node in right subtree 

resulted in a “better looking” BST

▪ If you want to be very fancy, you could check which option 

yields the most balanced BST before you delete the node

▪ This is fairly complicated to compute

▪ Most implementations just pick option A or option B

▪ There are better methods for creating balanced BSTs

▪ AVL trees, red-black trees, 2-3 trees, etc.

▪ These are beyond the scope of this class
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BST DELETE

bool BST::delete(node* &ptr, int value)

{

// value not found, so stop

if (ptr == NULL)

return false;

// value found, so delete

else if (ptr->value == value)

return delete_node(ptr); // handle 3 cases

...
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BST DELETE

...

// recursive search left

else if (ptr->value > value)

return delete(ptr->left, value);

// recursive search right

else if (ptr->value < value)

return delete(ptr->right, value);

}
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BST DELETE

bool BST::delete_node(node * & ptr)

{

// zero children case

if ((ptr->left == NULL) && (ptr->right == NULL))

{

delete ptr;

ptr = NULL;

return true;

}

...

CSCE 2014 - Programming Foundations II 70



BST DELETE

bool BST::delete_node(node * & ptr)

{

// zero children case

if ((ptr->left == NULL) && (ptr->right == NULL))

{

delete ptr;

ptr = NULL;

return true;

}

...
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BST DELETE

bool BST::delete_node(node * & ptr)

{

// zero children case

if ((ptr->left == NULL) && (ptr->right == NULL))

{

delete ptr;

ptr = NULL;

return true;

}

...
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BST DELETE

// one child on left

if ((ptr->left != NULL) && (ptr->right == NULL))

{

node * temp = ptr;

ptr = ptr->left;

delete temp;

return true;

}

...

CSCE 2014 - Programming Foundations II 73



BST DELETE

// one child on left

if ((ptr->left != NULL) && (ptr->right == NULL))

{

node * temp = ptr;

ptr = ptr->left;

delete temp;

return true;

}

...
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BST DELETE

// one child on left

if ((ptr->left != NULL) && (ptr->right == NULL))

{

node * temp = ptr;

ptr = ptr->left;

delete temp;

return true;

}

...
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BST DELETE

// one child on left

if ((ptr->left != NULL) && (ptr->right == NULL))

{

node * temp = ptr;

ptr = ptr->left;

delete temp;

return true

}

...
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BST DELETE

// one child on right

if ((ptr->left == NULL) && (ptr->right != NULL))

{

node * temp = ptr;

ptr = ptr->right;

delete temp;

return true;

}

...
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BST DELETE

// handle two children

if ((ptr->left != NULL) && (ptr->right != NULL))

{

// find left most node in right sub tree

node * parent = ptr;

node * child = parent->right;

while (child->left != NULL)

{

parent = child;

child = child->left;

}

...
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BST DELETE

// handle two children

if ((ptr->left != NULL) && (ptr->right != NULL))

{

// find left most node in right sub tree

node * parent = ptr;

node * child = parent->right;

while (child->left != NULL)

{

parent = child;

child = child->left;

}

...
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BST DELETE

// handle two children

if ((ptr->left != NULL) && (ptr->right != NULL))

{

// find left most node in right sub tree

node * parent = ptr;

node * child = parent->right;

while (child->left != NULL)

{

parent = child;

child = child->left;

}

...
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BST DELETE

...

// fix pointer to left most node

if (parent != ptr)

parent->left = child->right;

else

ptr->right = child->right;

// delete node

ptr->value = child->value;

delete child;

return true;

}

}

CSCE 2014 - Programming Foundations II 81

ptr

parent

child



BST DELETE

...

// fix pointer to left most node

if (parent != ptr)

parent->left = child->right;

else

ptr->right = child->right;

// delete node

ptr->value = child->value;

delete child;

return true;

}

}
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BST DELETE

...

// fix pointer to left most node

if (parent != ptr)

parent->left = child->right;

else

ptr->right = child->right;

// delete node

ptr->value = child->value;

delete child;

return true;

}

}
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BST DELETE

...

// fix pointer to left most node

if (parent != ptr)

parent->left = child->right;

else

ptr->right = child->right;

// delete node

ptr->value = child->value;

delete child;

return true;

}

}
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BST DELETE

...

// fix pointer to left most node

if (parent != ptr)

parent->left = child->right;

else

ptr->right = child->right;

// delete node

ptr->value = child->value;

delete child;

return true;

}

}
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BST DELETE

▪ The delete function above has a node* &ptr parameter

▪ Since the user of the BST class should never have access 

to the root pointer, we call the private delete method from 

the public delete method as follows

bool BST::delete(int value)

{ // call private method

return delete(root, value);

}
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BST DELETE

▪ If we have a balanced tree, each BST delete operation will take 

O(log2N) steps

▪ If we have a very unbalanced tree, each BST delete operation 

may take O(N) steps

▪ On average, we can expect O(log2N) steps per deletion
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BST BALANCE

▪ After many insert/delete operations we may end up with a 

very unbalanced BST, which will slow down search

▪ How can we balance the BST again?
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BST BALANCE

▪ The trick is to look at how we access the array when we 

perform binary search on sorted data
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o When we search 

this array we always 

visit data[3]=11 first

o We want to insert 

the value 11 into our 

balanced BST first



BST BALANCE

▪ The trick is to look at how we access the array when we 

perform binary search on sorted data
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BST BALANCE

▪ The trick is to look at how we access the array when we 

perform binary search on sorted data
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visit data[5]=15 next

o We want to insert 15 

into our BST before 

values 12 and 18



BST BALANCE

▪ The trick is to look at how we access the array when we 

perform binary search on sorted data
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o If value<4 we will 

visit data[0]=1 next

o We want to insert 1 

into our BST after 

inserting 11 and 4

o The other leaf 

nodes 9, 12, 18 

should also be 

inserted after their 

parents



BST BALANCE

▪ The first step in the balance process is to extract all of the 

tree data and store it in sorted order in an array 

▪ Extract Algorithm (very similar to sorted print)

▪ Create array large enough for all the data

▪ Initialize array index = 0

▪ Initialize tree ptr = root 

▪ Recursively extract data from ptr->left subtree into array

▪ Store data at ptr->value in array location data[index]

▪ Increment the array index by one

▪ Recursively extract data from ptr->right subtree into array
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BST BALANCE

void BST::extract(node* ptr, 

int data[], int &index)

{

// terminating condition

if (ptr == NULL) return;

// recursive calls to left and right

extract(ptr->left, data, index);

data[index++] = ptr->value;

extract(ptr->right, data, index);

}
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Index is a reference parameter 

that is incremented every time 

we store a value in data array

The recursion here 

is very similar to a 

sorted order print



BST BALANCE

▪ The next step is to insert sorted data into an empty BST in 

an order that mimics the order we do binary search

▪ Balance Algorithm

▪ Start with an empty BST

▪ Find value at location mid=(low+high)/2 of sorted array

▪ Insert this data value into the balanced BST

▪ Recursively insert data from [low..mid-1] into left subtree

▪ Recursively insert data from [mid+1..high] into right subtree

▪ Stop recursion when low > high
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BST BALANCE

void BST::balance(node* &ptr, 

int data[], int low, int high)

{

// terminating condition

if (low > high) return;

// insert middle value

int mid = (low + high) / 2;

insert(ptr, data[mid]);

...
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Insert data at mid location first

Check terminating condition



BST BALANCE

...

// insert data on left half of array

balance(ptr->left, data, low, mid-1);

// insert data on right half of array

balance(ptr->right, data, mid+1, high);

}
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Use the same array sub-

ranges as binary search, 

but process both halves 

of array 



BST BALANCE

void BST::balance_tree()

{

// extract data in sorted order

int data[Count];

int count = 0;

extract(Root, data, count);

...
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Create an empty array

Recursively extract 

data in sorted order



BST BALANCE

...

// call recursive function to insert data

Root = NULL;

Count = 0;

balance(Root, data, 0, count-1);

}
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Create an empty BST

Recursively insert data 

from the sorted array



BST BALANCE

▪ How many operations are needed by this algorithm to 

balance a binary search tree with N nodes?

▪ We have to traverse whole tree to create sorted array

▪ There are N nodes, so this takes O(N) steps

▪ We have to insert all N values back into an empty BST

▪ Each insert is O(logN) so this takes O(N logN) steps

▪ Hence our balance operation is O(N logN) 

▪ This is very expensive compared to O(logN) search or 

even O(N) search when the BST is very unbalanced

▪ Hence you should only do this when you think the BST is 

stable and will not be changing much in future
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BINARY TREES

SUMMARY



SUMMARY

▪ In this section, we introduced the binary tree as an 

abstract data type and the following tree terminology
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Term Description

Root node The root node is at the top of the tree

Leaf node Leaf nodes are at bottom of the tree and have no children

Internal node Internal nodes have one or more children nodes

Height of tree The number of nodes on longest path from root to leaf

Binary tree A tree with 0,1,2 children per node

Empty tree A tree with zero nodes

Full tree A binary tree where root and internal nodes all have 2 children

Complete tree A binary tree that is full except bottom level filled in from L-R

Balanced tree A binary tree where height of left and right subtrees differ by <= 1

Binary search tree A binary tree where all nodes in left subtree are less than parent, 
and nodes in right subtree are greater than parent



SUMMARY

▪ We also described how to define a binary search tree and 

how to implement the following operations
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Operation Description Ave Speed

Print Start at root of tree, recursively print values in left 
subtree, print current node, recursively print right subtree

O(N)

Search Start at root of tree, resursively search left subtree or 
right subtree depending on value of current node

O(logN)

Insert Perform recursivse search algorithm, insert new node at 
the “dead end“ where we were expecting the new value

O(logN)

Delete Perform recursive search algorithm to find value, adjust 
pointer to “jump over“ this node according to number of 
children nodes (0,1,2) and then delete this node

O(logN)

Balance Extract all data from tree in sorted order, insert data back 
into an empty tree in “binary search” order (inserting 
midpoint value before resursively inserting data on left 
and right halves of the sorted data array)

O(N logN)



SUMMARY

▪ Trees are used for many other purposes in computing

▪ We can implement tree sort by inserting N items into a 

BST and then printing them in O(N logN) time (see demo)

▪ Compilers can store arithmetic expressions in a parse tree 

and then walk this tree to evaluate the expression

▪ Binary trees are also used to implement Huffman coding 

and other data encoding/encryption techniques

▪ In the next section, we will introduce heaps, another type 

of binary tree that is used to store and retrieve data
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