
BINARY TREES

OVERVIEW

OVERVIEW

▪ What is a tree?

CSCE 2014 - Programming Foundations II 2

Good for climbing Good for storing data

OVERVIEW

▪ In computer science a tree is an abstract data type that

stores data in a hierarchical way, much like a family tree

▪ For tree node has most one parent

▪ Each tree node has zero or more children

▪ Each tree node has zero or more siblings

CSCE 2014 - Programming Foundations II 3

OVERVIEW

▪ Different types of data can be stored in tree nodes

depending on needs of the application

▪ Numbers, characters, strings

▪ Objects, other ADTs

▪ When we limit the number of children each node can have

to two, we have a binary tree

▪ Useful for quickly storing and retrieving data

▪ Also used to represent arithmetic expressions

CSCE 2014 - Programming Foundations II 4

BINARY TREES

TREE TERMINOLOGY

TREE TERMINOLOGY

▪ Root – top of tree, has no parent

▪ Leaf – bottom of tree, has no children

▪ Internal – not root, not leaf

▪ Height – the number of nodes on the longest path from

leaf node to root node

Root

Leaf Nodes

Height = 3

CSCE 2014 - Programming Foundations II 6

TREE TERMINOLOGY

▪ Empty – tree with zero nodes

▪ Full – binary tree with all leaf nodes at level h and all other

nodes have 2 children

Full tree, height 2

Full tree, height 3

CSCE 2014 - Programming Foundations II 7

TREE TERMINOLOGY

▪ How many nodes N can we store in a full binary tree of

height h?

h = 1, N = 1

h = 2, N = 1+2 = 3

h = 3, N = 1+2+4 = 7

h = 4, N = 1+2+4+8 = 15

…

N = 1+2+…+2h-1 = 2h-1

h=2, N= 22-1=3

h=3, N= 23-1=7

CSCE 2014 - Programming Foundations II 8

TREE TERMINOLOGY

▪ What is the minimum height of a binary tree that contains

N nodes? Assume tree is full.

N = 2h-1

h = log2(N+1)

N=3, h=log24 = 2

N=7, h=log28 = 3

CSCE 2014 - Programming Foundations II 9

TREE TERMINOLOGY

▪ Complete – a binary tree that is full to level h-1 and all leaf

nodes on level h are filled in from left to right

Complete

Complete

Not complete

CSCE 2014 - Programming Foundations II 10

Complete

TREE TERMINOLOGY

▪ Balanced – a binary tree in which the height of the left and

right subtrees of any node in the tree differ by at most one

2
1

Balanced

2

3

Balanced Not balanced

2

0

CSCE 2014 - Programming Foundations II 11

BINARY TREES

BINARY SEARCH TREES

BINARY SEARCH TREES

▪ Consider the task of searching a sorted array of data

using binary search

▪ We will always look at at data[3]=11 first

▪ If value is < 11 we will look at data[1]=4 next

▪ If value is > 11 we will look at data[5]=15 next

▪ This continues until we find the desired value

1 4 9 11 12 15 18

0 1 2 3 4 5 6

CSCE 2014 - Programming Foundations II 13

BINARY SEARCH TREES

▪ This sequence of decisions can be stored in a binary

search tree (BST)

11

154

91 12 18

< 11 > 11

• All nodes in the left

subtree are smaller in

value than parent

• All nodes in the right

subtree are larger in

value than parent

• This is true for all

nodes in BST

CSCE 2014 - Programming Foundations II 14

BINARY SEARCH TREES

Which of the following are valid BSTs?

CSCE 2014 - Programming Foundations II 15

BINARY TREES

BST CLASS DEFINITION

BST CLASS DEFINITION

class node

{

public:

int value;

node *left;

node *right;

};

value left right

11

CSCE 2014 - Programming Foundations II 17

BST CLASS DEFINITION

class BST

{

public:

BST();

~BST();

// public methods

void print();

bool search(int value);

bool insert(int value);

bool delete(int value);

...

CSCE 2014 - Programming Foundations II 18

BST CLASS DEFINITION

...

private:

// private methods

void print(node* ptr);

bool search(node* ptr, int value);

bool insert(node* &ptr, int value);

bool delete(node* &ptr, int value);

bool delete_node(node* &ptr);

// pointer to root of tree

node *root;

};

CSCE 2014 - Programming Foundations II 19

BINARY TREES

BST PRINT

BST PRINT

▪ Assume you are given a valid BST and you want to print
all the values in the tree

▪ With an array or linked list, we can start at one end and
use a loop access all the data up to the other end

▪ In order to print a BST, we can not simply loop over the
nodes. We need to call a recursive function that visits all
of the nodes in the tree

▪ We need to pass in a pointer to the root of tree

▪ Make recursive calls with left and right pointers

▪ The order we visit nodes determines print order

CSCE 2014 - Programming Foundations II 21

BST PRINT

void BST::print1(node* ptr)

{ // terminating condition

if (ptr == NULL) return;

// print left subtree

print1(ptr->left);

// print node value

cout << ptr->value << endl;

// print right subtree

print1(ptr->right);

}

This will print the

data values in

sorted order

CSCE 2014 - Programming Foundations II 22

BST PRINT

void BST::print2(node* ptr)

{ // terminating condition

if (ptr == NULL) return;

// print node value

cout << ptr->value << endl;

// print left subtree

print2(ptr->left);

// print right subtree

print2(ptr->right);

}

This will print the

data values in

preorder

CSCE 2014 - Programming Foundations II 23

BST PRINT

void BST::print3(node* ptr)

{ // terminating condition

if (ptr == NULL) return;

// print left subtree

print3(ptr->left);

// print right subtree

print3(ptr->right);

// print node value

cout << ptr->value << endl;

}

This will print the

data values in

postorder

CSCE 2014 - Programming Foundations II 24

BST PRINT

Example with numerical data:

CSCE 2014 - Programming Foundations II 25

BST PRINT

Example with symbolic data:

CSCE 2014 - Programming Foundations II 26

BST PRINT

▪ The print functions above have a node* ptr parameter

▪ The user of the BST class should never have direct access

to the private root pointer

▪ For this reason, we call the private print method from the

public print method as follows

void BST::print()

{ // call private method

print1(root);

}

CSCE 2014 - Programming Foundations II 27

BST PRINT

▪ How many steps will this print function take?

▪ We have to visit all N nodes, so print takes O(N) steps

▪ This is one place where we do not need to worry about

how balanced or unbalanced the tree is

▪ Is it possible to print a tree using iteration?

▪ Yes, but it is much more complicated

▪ We need to use a stack to keep track of nodes to print

▪ This is why recursion is so important to master

CSCE 2014 - Programming Foundations II 28

BINARY TREES

BST SEARCH

BST SEARCH
▪ Assume we are given a valid BST and wish to locate a desired

value in the tree

▪ Search Algorithm:

▪ Start ptr at root of tree

▪ If node value > desired go to left child

▪ If node value < desired go to right child

▪ Stop when ptr is null or when value is found

CSCE 2014 - Programming Foundations II 30

BST SEARCH

11

154

91 12 18

11

154

91 12 18

11

154

91 12 18

• Assume we are searching

the BST for the value 9

9 < 11 so go left we found the 9 node

9 > 4 so go rightstart at root of tree

CSCE 2014 - Programming Foundations II 31

BST SEARCH

11

154

91 12 18

11

154

91 12 18

11

154

91 12 18

• Assume we are searching

the BST for the value 13

13 > 11 so go right 13 > 12 but null pointer to

right so the value not found

13 < 15 so go leftstart at root of tree

CSCE 2014 - Programming Foundations II 32

BST SEARCH

bool List::search(int value)

{

// iteratively search linked list

node *ptr = head;

while ((ptr != NULL) && (ptr->value != value))

{

// go to next node

ptr = ptr->next;

}

// return true/false if found or not

return((ptr != NULL) && (ptr->value == value));

}

CSCE 2014 - Programming Foundations II 33

BST SEARCH

bool BST::search1(node* ptr, int value)

{ // iteratively search tree

while ((ptr != NULL) && (ptr->value != value))

{ // search left or right subtree

if (ptr->value > value)

ptr = ptr->left;

else if (ptr->value < value)

ptr = ptr->right;

}

// return true/false if found or not

return((ptr != NULL) && (ptr->value == value));

}

CSCE 2014 - Programming Foundations II 34

BST SEARCH

bool BST::search2(node* ptr, int value)

{ // terminating conditions

if (ptr == NULL)

return false;

else if (ptr->value == value)

return true;

// recursively search tree

if (ptr->value > value)

return search(ptr->left, value);

else if (ptr->value < value)

return search(ptr->right, value);

}

CSCE 2014 - Programming Foundations II 35

BST SEARCH

▪ The search functions above have a node *ptr parameter

▪ The user of the BST class should never have direct access

to the private root pointer

▪ For this reason, we call the private search method from the

public search method as follows

bool BST::search(int value)

{ // call private method

return search2(root, value);

}

CSCE 2014 - Programming Foundations II 36

BST SEARCH

• Assume we have a BST with

nodes at these memory locations

• Lets do the box method trace

of the call to tree.search(9)

CSCE 2014 - Programming Foundations II 37

11

154

91 12 18

1016

1000

1032

10481064 1080 1096

search(9)

BST SEARCH

• The root of the BST is at

memory location 1000 so

we call tree.search2(1000, 9)

CSCE 2014 - Programming Foundations II 38

11

154

91 12 18

1016

1000

1032

10481064 1080 1096

search(9) search2(1000,9)

root

BST SEARCH

• ptr->value is 11 > 9 so

we search left and call call

tree.search2(1016, 9)

CSCE 2014 - Programming Foundations II 39

11

154

91 12 18

1016

1000

1032

10481064 1080 1096

search(9) search2(1000,9) search2(1016,9)

ptr->leftroot

BST SEARCH

• ptr->value is 4 < 9 so

we search right and call call

tree.search2(1080, 9)

CSCE 2014 - Programming Foundations II 40

11

154

91 12 18

1016

1000

1032

10481064 1080 1096

search(9) search2(1000,9) search2(1016,9) search2(1080,9)

ptr->left ptr->rightroot

BST SEARCH

• ptr->value is 9 == 9 so

we return true all the way back

to the search(9) call

CSCE 2014 - Programming Foundations II 41

11

154

91 12 18

1016

1000

1032

10481064 1080 1096

search(9) search2(1000,9) search2(1016,9) search2(1080,9)

ptr->left ptr->right found
root

BST SEARCH

▪ If we have a balanced tree, this BST search algorithm will find

the data after O(log2N) steps

▪ If we have a very unbalanced tree (that looks like a linked list)

this BST search may take O(N) steps

▪ On average, we can expect BST search to take O(log2N) steps

CSCE 2014 - Programming Foundations II 42

BINARY TREES

BST INSERT

BST INSERT

▪ Assume we want to insert a new data value into a BST

▪ We want to make sure we will still have a valid BST after

insertion so we must insert data where we expect to find it

▪ Insert Algorithm:

▪ Search the BST for the desired value

▪ Add the new node at the “dead end”

11

154

12

11

154

insert value 12

CSCE 2014 - Programming Foundations II 44

BST INSERT

Examples:

10

147

12

10

205 insert 2 and 8

insert 13 and 14

CSCE 2014 - Programming Foundations II 45

BST INSERT

Examples:

8

93 insert 10, 11, and 12

insert 12, 10, and 11

insert 42empty tree

CSCE 2014 - Programming Foundations II 46

BST INSERT

▪ With this algorithm we are always inserting a new leaf

node (never an internal node)

▪ Order matters when inserting values into a BST

▪ What will happen if we insert N sorted values into a BST?

▪ What will happen if we insert N random values into a BST?

CSCE 2014 - Programming Foundations II 47

BST INSERT

bool BST::insert(node* ptr, int value)

{

// terminating condition

if (ptr == NULL)

{

// insert node into BST

ptr = new node;

ptr->value = value;

ptr->left = NULL;

ptr->right = NULL;

return true;

}

…

CSCE 2014 - Programming Foundations II 48

BST INSERT

…

// recursive search and insert

else if (ptr->value > value)

return insert(ptr->left, value);

else if (ptr->value < value)

return insert(ptr->right, value);

return false;

}

▪ Do you see any problems with function parameters?

▪ What will this function do if we insert duplicate data?

CSCE 2014 - Programming Foundations II 49

BST INSERT

bool BST::insert(node* &ptr, int value)

{

// terminating condition

if (ptr == NULL)

{

// insert node into BST

ptr = new node;

ptr->value = value;

ptr->left = NULL;

ptr->right = NULL;

return true;

}

…

CSCE 2014 - Programming Foundations II 50

BST INSERT

…

// recursive search and insert

else if (ptr->value >= value)

return insert(ptr->left, value);

else if (ptr->value < value)

return insert(ptr->right, value);

}

▪ This will insert duplicate values into left subtree.

CSCE 2014 - Programming Foundations II 51

BST INSERT

…

// recursive search and insert

else if (ptr->value > value)

return insert(ptr->left, value);

else if (ptr->value <= value)

return insert(ptr->right, value);

}

▪ This will insert duplicate values into right subtree.

CSCE 2014 - Programming Foundations II 52

BST INSERT

▪ The insert function above has a node* &ptr parameter

▪ Since the user of the BST class should never have access

to the root pointer, we call the private insert method from

the public insert method as follows

bool BST::insert(int value)

{ // call private method

return insert(root, value);

}

CSCE 2014 - Programming Foundations II 53

BST INSERT

• Assume we have a BST with

nodes at these memory locations

• Lets do the box method trace

of the call to tree.insert(9)

CSCE 2014 - Programming Foundations II 54

11

154

1 12 18

1016

1000

1032

10481064 1096

insert(9)

root

BST INSERT

• The root of the BST is at

memory location 1000 so

we call tree.insert(root, 9)

CSCE 2014 - Programming Foundations II 55

11

154

1 12 18

1016

1000

1032

10481064 1096

insert(9) insert(root,9)

root

BST INSERT

• ptr->value is 11 > 9 so

we go left and call call

tree.insert(ptr->left, 9)

CSCE 2014 - Programming Foundations II 56

11

154

1 12 18

1016

1000

1032

10481064 1096

insert(9) insert(root,9) insert(ptr->left,9)

ptr->leftroot

BST INSERT

• ptr->value is 4 < 9 so

we go right and call call

tree.insert(ptr->right, 9)

CSCE 2014 - Programming Foundations II 57

11

154

1 12 18

1016

1000

1032

10481064 1096

insert(9) insert(root,9) insert(ptr->left,9) insert(ptr->right,9)

ptr->left ptr->rightroot

BST INSERT

• Since ptr->right == NULL we

create a new tree node at location

1080 and store this in ptr->right

which is a reference parameter

CSCE 2014 - Programming Foundations II 58

11

154

1 12 18

1016

1000

1032

10481064 1080 1096

insert(9) insert(root,9) insert(ptr->left,9) insert(ptr->right,9)

ptr->left ptr->right new node
root

BST INSERT

• Finally we save value 9 in

the new node and return true

back to the insert(9) call

CSCE 2014 - Programming Foundations II 59

11

154

91 12 18

1016

1000

1032

10481064 1080 1096

insert(9) insert(root,9) insert(ptr->left,9) insert(ptr->right,9)

ptr->left ptr->right new node
root

BST INSERT

▪ If we have a balanced tree, each BST insertion operation will

take O(log2N) steps

▪ If we have a very unbalanced tree, each BST insertion operation

may take O(N) steps

▪ On average, we can expect O(log2N) steps per insertion

CSCE 2014 - Programming Foundations II 60

BINARY TREES

BST DELETE

BST DELETE

▪ Assume we are given a valid BST and we wish to delete a

node with a given value

▪ We have to be careful to maintain a valid BST

▪ Delete Algorithm:

▪ Start at root of tree

▪ Search for node to delete from tree

▪ Adjust tree pointers to “jump over” the deleted node

▪ Delete the node

CSCE 2014 - Programming Foundations II 62

BST DELETE

There are three cases to consider when deleting a node:

0 children – set pointer to deleted node to null

10

147

12

10

147

delete value 12

CSCE 2014 - Programming Foundations II 63

BST DELETE

1 child – change pointer in the parent of the deleted node so it

points to the child of the deleted node

10

147

12

delete value 14

10

7

12

CSCE 2014 - Programming Foundations II 64

BST DELETE

2 children – find left most node in right sub tree

– swap value with node to be deleted

– delete left most node from tree

10

147

12

delete value 10

12

147

12

147

10

CSCE 2014 - Programming Foundations II 65

BST DELETE

2 children – find right most node in left sub tree

– swap value with node to be deleted

– delete right most node from tree

10

147

12

delete value 10

7

1410

12

7

14

12

CSCE 2014 - Programming Foundations II 66

BST DELETE

▪ In this case, swapping with left most node in right subtree

resulted in a “better looking” BST

▪ If you want to be very fancy, you could check which option

yields the most balanced BST before you delete the node

▪ This is fairly complicated to compute

▪ Most implementations just pick option A or option B

▪ There are better methods for creating balanced BSTs

▪ AVL trees, red-black trees, 2-3 trees, etc.

▪ These are beyond the scope of this class

CSCE 2014 - Programming Foundations II 67

BST DELETE

bool BST::delete(node* &ptr, int value)

{

// value not found, so stop

if (ptr == NULL)

return false;

// value found, so delete

else if (ptr->value == value)

return delete_node(ptr); // handle 3 cases

...

CSCE 2014 - Programming Foundations II 68

BST DELETE

...

// recursive search left

else if (ptr->value > value)

return delete(ptr->left, value);

// recursive search right

else if (ptr->value < value)

return delete(ptr->right, value);

}

CSCE 2014 - Programming Foundations II 69

BST DELETE

bool BST::delete_node(node * & ptr)

{

// zero children case

if ((ptr->left == NULL) && (ptr->right == NULL))

{

delete ptr;

ptr = NULL;

return true;

}

...

CSCE 2014 - Programming Foundations II 70

BST DELETE

bool BST::delete_node(node * & ptr)

{

// zero children case

if ((ptr->left == NULL) && (ptr->right == NULL))

{

delete ptr;

ptr = NULL;

return true;

}

...

CSCE 2014 - Programming Foundations II 71

BST DELETE

bool BST::delete_node(node * & ptr)

{

// zero children case

if ((ptr->left == NULL) && (ptr->right == NULL))

{

delete ptr;

ptr = NULL;

return true;

}

...

CSCE 2014 - Programming Foundations II 72

BST DELETE

// one child on left

if ((ptr->left != NULL) && (ptr->right == NULL))

{

node * temp = ptr;

ptr = ptr->left;

delete temp;

return true;

}

...

CSCE 2014 - Programming Foundations II 73

BST DELETE

// one child on left

if ((ptr->left != NULL) && (ptr->right == NULL))

{

node * temp = ptr;

ptr = ptr->left;

delete temp;

return true;

}

...

CSCE 2014 - Programming Foundations II 74

temp

BST DELETE

// one child on left

if ((ptr->left != NULL) && (ptr->right == NULL))

{

node * temp = ptr;

ptr = ptr->left;

delete temp;

return true;

}

...

CSCE 2014 - Programming Foundations II 75

temp

This “jumps over”

the deleted node

BST DELETE

// one child on left

if ((ptr->left != NULL) && (ptr->right == NULL))

{

node * temp = ptr;

ptr = ptr->left;

delete temp;

return true

}

...

CSCE 2014 - Programming Foundations II 76

temp

BST DELETE

// one child on right

if ((ptr->left == NULL) && (ptr->right != NULL))

{

node * temp = ptr;

ptr = ptr->right;

delete temp;

return true;

}

...

CSCE 2014 - Programming Foundations II 77

This “jumps over”

the deleted node

BST DELETE

// handle two children

if ((ptr->left != NULL) && (ptr->right != NULL))

{

// find left most node in right sub tree

node * parent = ptr;

node * child = parent->right;

while (child->left != NULL)

{

parent = child;

child = child->left;

}

...

CSCE 2014 - Programming Foundations II 78

ptr

BST DELETE

// handle two children

if ((ptr->left != NULL) && (ptr->right != NULL))

{

// find left most node in right sub tree

node * parent = ptr;

node * child = parent->right;

while (child->left != NULL)

{

parent = child;

child = child->left;

}

...

CSCE 2014 - Programming Foundations II 79

ptr parent

child

BST DELETE

// handle two children

if ((ptr->left != NULL) && (ptr->right != NULL))

{

// find left most node in right sub tree

node * parent = ptr;

node * child = parent->right;

while (child->left != NULL)

{

parent = child;

child = child->left;

}

...

CSCE 2014 - Programming Foundations II 80

ptr

parent

child

This loop stops after

only one iteration

BST DELETE

...

// fix pointer to left most node

if (parent != ptr)

parent->left = child->right;

else

ptr->right = child->right;

// delete node

ptr->value = child->value;

delete child;

return true;

}

}

CSCE 2014 - Programming Foundations II 81

ptr

parent

child

BST DELETE

...

// fix pointer to left most node

if (parent != ptr)

parent->left = child->right;

else

ptr->right = child->right;

// delete node

ptr->value = child->value;

delete child;

return true;

}

}

CSCE 2014 - Programming Foundations II 82

ptr

parent

child

BST DELETE

...

// fix pointer to left most node

if (parent != ptr)

parent->left = child->right;

else

ptr->right = child->right;

// delete node

ptr->value = child->value;

delete child;

return true;

}

}

CSCE 2014 - Programming Foundations II 83

ptr

parent

child

BST DELETE

...

// fix pointer to left most node

if (parent != ptr)

parent->left = child->right;

else

ptr->right = child->right;

// delete node

ptr->value = child->value;

delete child;

return true;

}

}

CSCE 2014 - Programming Foundations II 84

ptr

parent

child

BST DELETE

...

// fix pointer to left most node

if (parent != ptr)

parent->left = child->right;

else

ptr->right = child->right;

// delete node

ptr->value = child->value;

delete child;

return true;

}

}

CSCE 2014 - Programming Foundations II 85

This code handles the

special case where the

node to right of ptr is

the leftmost node

BST DELETE

▪ The delete function above has a node* &ptr parameter

▪ Since the user of the BST class should never have access

to the root pointer, we call the private delete method from

the public delete method as follows

bool BST::delete(int value)

{ // call private method

return delete(root, value);

}

CSCE 2014 - Programming Foundations II 86

BST DELETE

▪ If we have a balanced tree, each BST delete operation will take

O(log2N) steps

▪ If we have a very unbalanced tree, each BST delete operation

may take O(N) steps

▪ On average, we can expect O(log2N) steps per deletion

CSCE 2014 - Programming Foundations II 87

BINARY TREES

BST BALANCE

BST BALANCE

▪ After many insert/delete operations we may end up with a

very unbalanced BST, which will slow down search

▪ How can we balance the BST again?

CSCE 2014 - Programming Foundations II 89

Not balanced

Balanced

BST BALANCE

▪ The trick is to look at how we access the array when we

perform binary search on sorted data

CSCE 2014 - Programming Foundations II 90

1 4 9 11 12 15 18

0 1 2 3 4 5 6

11

154

91 12 18

o When we search

this array we always

visit data[3]=11 first

o We want to insert

the value 11 into our

balanced BST first

BST BALANCE

▪ The trick is to look at how we access the array when we

perform binary search on sorted data

CSCE 2014 - Programming Foundations II 91

1 4 9 11 12 15 18

0 1 2 3 4 5 6

11

154

91 12 18

o If value<11 we will

visit data[1]=4 next

o We want to insert 4

into our BST before

values 1 and 9

BST BALANCE

▪ The trick is to look at how we access the array when we

perform binary search on sorted data

CSCE 2014 - Programming Foundations II 92

1 4 9 11 12 15 18

0 1 2 3 4 5 6

11

154

91 12 18

o If value>11 we will

visit data[5]=15 next

o We want to insert 15

into our BST before

values 12 and 18

BST BALANCE

▪ The trick is to look at how we access the array when we

perform binary search on sorted data

CSCE 2014 - Programming Foundations II 93

1 4 9 11 12 15 18

0 1 2 3 4 5 6

11

154

91 12 18

o If value<4 we will

visit data[0]=1 next

o We want to insert 1

into our BST after

inserting 11 and 4

o The other leaf

nodes 9, 12, 18

should also be

inserted after their

parents

BST BALANCE

▪ The first step in the balance process is to extract all of the

tree data and store it in sorted order in an array

▪ Extract Algorithm (very similar to sorted print)

▪ Create array large enough for all the data

▪ Initialize array index = 0

▪ Initialize tree ptr = root

▪ Recursively extract data from ptr->left subtree into array

▪ Store data at ptr->value in array location data[index]

▪ Increment the array index by one

▪ Recursively extract data from ptr->right subtree into array

CSCE 2014 - Programming Foundations II 94

BST BALANCE

void BST::extract(node* ptr,

int data[], int &index)

{

// terminating condition

if (ptr == NULL) return;

// recursive calls to left and right

extract(ptr->left, data, index);

data[index++] = ptr->value;

extract(ptr->right, data, index);

}

CSCE 2014 - Programming Foundations II 95

Index is a reference parameter

that is incremented every time

we store a value in data array

The recursion here

is very similar to a

sorted order print

BST BALANCE

▪ The next step is to insert sorted data into an empty BST in

an order that mimics the order we do binary search

▪ Balance Algorithm

▪ Start with an empty BST

▪ Find value at location mid=(low+high)/2 of sorted array

▪ Insert this data value into the balanced BST

▪ Recursively insert data from [low..mid-1] into left subtree

▪ Recursively insert data from [mid+1..high] into right subtree

▪ Stop recursion when low > high

CSCE 2014 - Programming Foundations II 96

BST BALANCE

void BST::balance(node* &ptr,

int data[], int low, int high)

{

// terminating condition

if (low > high) return;

// insert middle value

int mid = (low + high) / 2;

insert(ptr, data[mid]);

...

CSCE 2014 - Programming Foundations II 97

Insert data at mid location first

Check terminating condition

BST BALANCE

...

// insert data on left half of array

balance(ptr->left, data, low, mid-1);

// insert data on right half of array

balance(ptr->right, data, mid+1, high);

}

CSCE 2014 - Programming Foundations II 98

Use the same array sub-

ranges as binary search,

but process both halves

of array

BST BALANCE

void BST::balance_tree()

{

// extract data in sorted order

int data[Count];

int count = 0;

extract(Root, data, count);

...

CSCE 2014 - Programming Foundations II 99

Create an empty array

Recursively extract

data in sorted order

BST BALANCE

...

// call recursive function to insert data

Root = NULL;

Count = 0;

balance(Root, data, 0, count-1);

}

CSCE 2014 - Programming Foundations II 100

Create an empty BST

Recursively insert data

from the sorted array

BST BALANCE

▪ How many operations are needed by this algorithm to

balance a binary search tree with N nodes?

▪ We have to traverse whole tree to create sorted array

▪ There are N nodes, so this takes O(N) steps

▪ We have to insert all N values back into an empty BST

▪ Each insert is O(logN) so this takes O(N logN) steps

▪ Hence our balance operation is O(N logN)

▪ This is very expensive compared to O(logN) search or

even O(N) search when the BST is very unbalanced

▪ Hence you should only do this when you think the BST is

stable and will not be changing much in future

CSCE 2014 - Programming Foundations II 101

BINARY TREES

SUMMARY

SUMMARY

▪ In this section, we introduced the binary tree as an

abstract data type and the following tree terminology

CSCE 2014 - Programming Foundations II 103

Term Description

Root node The root node is at the top of the tree

Leaf node Leaf nodes are at bottom of the tree and have no children

Internal node Internal nodes have one or more children nodes

Height of tree The number of nodes on longest path from root to leaf

Binary tree A tree with 0,1,2 children per node

Empty tree A tree with zero nodes

Full tree A binary tree where root and internal nodes all have 2 children

Complete tree A binary tree that is full except bottom level filled in from L-R

Balanced tree A binary tree where height of left and right subtrees differ by <= 1

Binary search tree A binary tree where all nodes in left subtree are less than parent,
and nodes in right subtree are greater than parent

SUMMARY

▪ We also described how to define a binary search tree and

how to implement the following operations

CSCE 2014 - Programming Foundations II 104

Operation Description Ave Speed

Print Start at root of tree, recursively print values in left
subtree, print current node, recursively print right subtree

O(N)

Search Start at root of tree, resursively search left subtree or
right subtree depending on value of current node

O(logN)

Insert Perform recursivse search algorithm, insert new node at
the “dead end“ where we were expecting the new value

O(logN)

Delete Perform recursive search algorithm to find value, adjust
pointer to “jump over“ this node according to number of
children nodes (0,1,2) and then delete this node

O(logN)

Balance Extract all data from tree in sorted order, insert data back
into an empty tree in “binary search” order (inserting
midpoint value before resursively inserting data on left
and right halves of the sorted data array)

O(N logN)

SUMMARY

▪ Trees are used for many other purposes in computing

▪ We can implement tree sort by inserting N items into a

BST and then printing them in O(N logN) time (see demo)

▪ Compilers can store arithmetic expressions in a parse tree

and then walk this tree to evaluate the expression

▪ Binary trees are also used to implement Huffman coding

and other data encoding/encryption techniques

▪ In the next section, we will introduce heaps, another type

of binary tree that is used to store and retrieve data

CSCE 2014 - Programming Foundations II 105

	Slide 1: Binary trees
	Slide 2: OVERVIEW
	Slide 3: OVERVIEW
	Slide 4: overview
	Slide 5: Binary trees
	Slide 6: Tree terminology
	Slide 7: Tree terminology
	Slide 8: Tree terminology
	Slide 9: Tree terminology
	Slide 10: Tree terminology
	Slide 11: Tree terminology
	Slide 12: Binary trees
	Slide 13: Binary search trees
	Slide 14: Binary search trees
	Slide 15: Binary search trees
	Slide 16: Binary trees
	Slide 17: BST class definition
	Slide 18: BST class definition
	Slide 19: BST class definition
	Slide 20: Binary trees
	Slide 21: BST print
	Slide 22: BST print
	Slide 23: BST print
	Slide 24: BST print
	Slide 25: BST print
	Slide 26: BST print
	Slide 27: BST print
	Slide 28: BST print
	Slide 29: Binary trees
	Slide 30: BST search
	Slide 31: BST search
	Slide 32: BST search
	Slide 33: BST search
	Slide 34: BST search
	Slide 35: BST search
	Slide 36: BST search
	Slide 37: BST search
	Slide 38: BST search
	Slide 39: BST search
	Slide 40: BST search
	Slide 41: BST search
	Slide 42: BST search
	Slide 43: Binary trees
	Slide 44: BST insert
	Slide 45: BST insert
	Slide 46: BST insert
	Slide 47: BST insert
	Slide 48: BST insert
	Slide 49: BST insert
	Slide 50: BST insert
	Slide 51: BST insert
	Slide 52: BST insert
	Slide 53: BST insert
	Slide 54: BST insert
	Slide 55: BST insert
	Slide 56: BST insert
	Slide 57: BST insert
	Slide 58: BST insert
	Slide 59: BST insert
	Slide 60: BST insert
	Slide 61: Binary trees
	Slide 62: BST delete
	Slide 63: BST delete
	Slide 64: BST delete
	Slide 65: BST delete
	Slide 66: BST delete
	Slide 67: BST delete
	Slide 68: BST delete
	Slide 69: BST delete
	Slide 70: BST delete
	Slide 71: BST delete
	Slide 72: BST delete
	Slide 73: BST delete
	Slide 74: BST delete
	Slide 75: BST delete
	Slide 76: BST delete
	Slide 77: BST delete
	Slide 78: BST delete
	Slide 79: BST delete
	Slide 80: BST delete
	Slide 81: BST delete
	Slide 82: BST delete
	Slide 83: BST delete
	Slide 84: BST delete
	Slide 85: BST delete
	Slide 86: BST delete
	Slide 87: BST delete
	Slide 88: Binary trees
	Slide 89: Bst balance
	Slide 90: Bst balance
	Slide 91: Bst balance
	Slide 92: Bst balance
	Slide 93: Bst balance
	Slide 94: Bst balance
	Slide 95: Bst balance
	Slide 96: Bst balance
	Slide 97: Bst balance
	Slide 98: Bst balance
	Slide 99: Bst balance
	Slide 100: Bst balance
	Slide 101: Bst balance
	Slide 102: Binary trees
	Slide 103: summary
	Slide 104: summary
	Slide 105: summary

